1. Evaluate $\int_{C} x z d x-z d y+y d z$ where C is the line segment from $(1,1,1)$ to $(2,3,4)$.

The line segment can be parametrized as $x=1+t, y=1+2 t, z=1+3 t$ where $0 \leq t \leq 1$. Then $d x=d t, d y=2 d t, d z=3 d t$ so the integral becomes $\int_{0}^{1}(1+t)(1+3 t) d t-(1+3 t) 2 d t+(1+2 t) 3 d t=\int_{0}^{1} 3 t^{2}+4 t+2 d t=$ $t^{3}+2 t^{2}+\left.2 t\right|_{0} ^{1}=5$.
2. The force field $F(x, y)=\left\langle e^{x^{2}}, 2 x-e^{y^{2}}\right\rangle$ acts on a particle moving from $(0,0)$ to $(1,1)$.
(a) Compute the work done by the force if the particle moves in a straight line.
The work is $\int_{C} e^{x^{2}} d x+\left(2 x-e^{y^{2}}\right) d y$. The line can be parametrized as $x=t, y=t$ for $0 \leq t \leq 1$ so both $d x, d y$ equal $d t$ and the integral becomes $\int_{0}^{1} e^{t^{2}}+2 t-e^{t^{2}} d t=\int_{0}^{1} 2 t d t=\left.t^{2}\right|_{0} ^{1}=1$.
(b) Compute the work done by the force if the particle moves first along the x-axis to $(4,0)$ and then in a straight line to $(1,1)$.

These are not easy to evaluate directly, so we will instead use Green's theorem and the results from part a. Let C be the triangle with vertices $(0,0),(4,0),(1,1)$ oriented counterclockwise and T the region enclosed by C. Let C_{1} be the path from part b , a straight line from $(0,0)$ to $(4,0)$ then a straight line to $(1,1)$. Let C_{2} be the line from $(1,1)$ to $(0,0)$. Then $C=C_{1} \cup C_{2}$ so

$$
\int_{C} F \cdot d r=\int_{C_{1}} F \cdot d r+\int_{C_{2}} F \cdot d r .
$$

Then $\int_{C_{1}} F \cdot d r=-1$ because C_{2} is the negative of the curve in part a.
We can calculate $\int_{C} F \cdot d r$ using Green's theorem. We have that
$P=e^{x^{2}}, Q=2 x-e^{y^{2}}$ so $Q_{x}=2, P_{y}=0$ and by Green's theorem, $\int_{C} F \cdot d r=\iint_{T} 2 d A=2 A(T)=4$ where $A(T)$ is the area of the triangle T. Then $4=-1+\int_{C_{2}} F \cdot d r$ so the work over C_{2} is $\int_{C_{2}} F \cdot d r=5$.
3. Evaluate $\int_{C}(1+y z) d x+(2 y+x z) d y+\left(-3 x^{2}\right) d z$ along the path parametrized by $x=t, y=t^{2}, z=e^{t}$ for $0 \leq t \leq 1$.
We have that $d x=d t, d y=2 t d t, d z=e^{t} d t$ so this becomes $\int_{0}^{1}\left(1+t^{2} e^{t}\right)+\left(2 t^{2}+t e^{t}\right) 2 t+\left(-3 t^{2}\right) e^{t} d t=\int_{0}^{1} 1+4 t^{3} d t=t+\left.t^{4}\right|_{0} ^{1}=2$.
4. Find the mass of that part of the surface $z=x y$ that lies within one unit of the z-axis if the density at the point (x, y) is given by $\delta(x, y)=x^{2}+y^{2}$. Note: The mass of an object is equal to the integral over the object of the density function.
This is the surface integral of the function $x^{2}+y^{2}$ over the part of the surface $z=x y$ which is inside the cylinder $x^{2}+y^{2}=1$. If D is the unit disk $x^{2}+y^{2} \leq 1$ on the $x y$-plane then this integral is $\iint_{D}\left(x^{2}+y^{2}\right) d S$. Let $f(x, y)=x y$. Then $d S=\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A=\sqrt{1+y^{2}+x^{2}} d A$ so the integral is $\iint_{D}\left(x^{2}+y^{2}\right) \sqrt{1+y^{2}+x^{2}} d A$. Changing to polar, we get the integral

$$
\int_{0}^{2 \pi} \int_{0}^{1} r^{2} \sqrt{1+r^{2}} r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1} r^{3} \sqrt{1+r^{2}} d r d \theta=2 \pi \int_{0}^{1} r^{3} \sqrt{1+r^{2}} d r
$$

Use the u-substitution $u=1+r^{2}, d u=2 r d r$ and $r^{2}=u-1$ to get that this is

$$
\pi \int_{1}^{2}(u-1) \sqrt{u} d u=\pi \int_{1}^{2} u^{\frac{3}{2}}-u^{\frac{1}{2}} d u=\left.\pi\left(\frac{2}{5} u^{\frac{5}{2}}-\frac{2}{3} u^{\frac{3}{2}}\right)\right|_{1} ^{2}=2 \pi\left(\frac{4 \sqrt{2}}{5}-\frac{2 \sqrt{2}}{3}-\frac{1}{5}+\frac{1}{3}\right) .
$$

5. A nonuniform piece of wire if bent into the shape of the curve $y=\sin (x)$ between $x=0$ and $x=\pi$. The density of the wire at the point (x, y) is equal to $1+y$. Set up, but do not evaluate, an integral equal to the mass of the wire.

This is the line integral of $1+y$ over the curve C parametrized by $x=t, y=\sin (t), 0 \leq t \leq \pi$ so it's $\int_{C}(1+y) d s$. Then $d x / d t=1, d y / d t=\cos (t)$ so $d s=\sqrt{1+\cos ^{2}(t)} d t$ and the integral is

$$
\int_{0}^{\pi}(1+\sin (t)) \sqrt{1+\cos ^{2}(t)} d t
$$

6. Find the work done by the force $F(x, y)=\left\langle 2 x \cos \left(x^{2}\right)+e^{y}, x e^{y}\right\rangle$ in moving a particle along a semicircle of radius 1 from $(1,0)$ to $(-1,0)$.
This would be difficult to evaluate directly so we will check if F is conservative so we can use the fundamental theorem of line integrals. F is defined on the entire $x y$-plane and $P_{y}=e^{y}=Q_{x}$ so F is conservative. F has potential function $f(x, y)=\sin \left(x^{2}\right)+x e^{y}$ so the work is $f(-1,0)-f(1,0)=(\sin (1)-1)-(\sin (1)+1)=-2$.
7. A force given by $F(x, y)=\left\langle y, e^{x}\right\rangle$ acts on a particle moving from the point $(0,1)$ to the point $(2,0)$ along the following path: first along the curve $y=e^{x}$ from $(0,1)$ to $\left(2, e^{2}\right)$ and then along a line from there to $(2,0)$. Find the work done by the force.

Let C_{1} be the first curve. Then C_{1} can be parametrized by $x=t, y=e^{t}, 0 \leq 2$ and $d x=d t, d y=e^{t} d t$ so the work is
$\int_{C_{1}} y d x+e^{x} d y=\int_{0}^{2} e^{t}+e^{2 t} d t=e^{t}+\left.\frac{1}{2} e^{2 t}\right|_{0} ^{2}=e^{2}+\frac{1}{2} e^{4}-\frac{3}{2}$.
Let C_{2} be the second part of the curve, the line from $\left(2, e^{2}\right)$ to $(2,0)$. This can be parametrized by $x=2, y=-t,-e^{2} \leq t \leq 0$. Then $d x=0, d y=-d t$ and the work is $\int_{C_{2}} y d x+e^{x} d y=\int_{-e^{2}}^{0}-e^{2} d t=-\left.e^{2} t\right|_{-e^{2}} ^{0}=-e^{4}$.
The work over the whole path is $e^{2}+\frac{1}{2} e^{4}-\frac{3}{2}-e^{4}=-\frac{1}{2} e^{4}+e^{2}-\frac{3}{2}$.
8. Evaluate $\int_{C} 2 x e^{y} d x+\left(3 x+x^{2} e^{y}\right) d y$ where C is the triangular path from $(0,0)$ to $(1,1)$ to $(2,0)$ and back to $(0,0)$.
Let T be the triangular region enclosed by C. Then by Green's theorem, the line integral over the triangle traversed counterclockwise is $\iint_{T} 3+2 x e^{y}-2 x e^{y} d A=\iint_{T} 3 d A=3 A(T)=3$ where $A(T)=1$ is the area of the triangle. The path C traverses the triangle clockwise, so the line integral over C will be the negative of the counterclockwise integral so it is -3 .
9. Let $F(x, y, z)=\left\langle e^{y}+z e^{x}, x e^{y}-e^{z}, e^{x}-y e^{z}\right\rangle$.
(a) Compute the curl and divergence of F.

The curl of F is $\left\langle-e^{z}-\left(-e^{z}\right), e^{x}-e^{x}, e^{y}-e^{y}\right\rangle=\langle 0,0,0\rangle$ and the divergence is $z e^{x}+x e^{y}-y e^{z}$.
(b) Determine if F is conservative. If yes, find f such that $F=\nabla f$, if not explain why.
F is conservative as it is defined on all \mathbb{R}^{3} and has curl equal to 0 . To find f, we integrate the first component of F with respect to x and get that $f(x, y, z)=x e^{y}+z e^{x}+g(y, z)$. Then $x e^{y}-e^{z}=f_{y}=x e^{y}+g_{y}(y, z)$ so $g_{y}(y, z)=-e^{z}$. Integrating with respect to y we get $g(y, z)=-y e^{z}+h(z)$ so $f(x, y, z)=x e^{y}+z e^{x}-y e^{z}+h(z)$. Then $e^{x}-y e^{z}=f_{z}=e^{x}-y e^{z}+h^{\prime}(z)$ so $h^{\prime}(z)=0$ and $h(z)=c$ where c is constant. Thus f is of the form $f(x, y, z)=x e^{y}+z e^{x}-y e^{z}+c$. We only need to find one such f so in particular we can take the one where $c=0$ so we have $f(x, y, z)=x e^{y}+z e^{x}-y e^{z}$.
(c) Integrate $\int_{C} F \cdot d r$ along the line segment from $(1,1,1)$ to $(2,2,2)$.
F is conservative so we can use the fundamental theorem of line integrals to get that
$\int_{C} F \cdot d r=f(2,2,2)-f(1,1,1)=\left(2 e^{2}+2 e^{2}-2 e^{2}\right)-(e+e-e)=2 e^{2}-e$.
10. Compute $\int \cos \left(y^{2}\right) d x+x\left(x-2 y \sin \left(y^{2}\right)\right) d y$ along each of the following paths.
(a) The line segment from $(0,0)$ to $(1,0)$.

Parameterize this as $x=t, y=0$ with $0 \leq t \leq 1$ and $d x=d t, d y=0$. Then the integral becomes $\int_{0}^{1} d t=1$.
(b) The line segment from $(0,1)$ to $(0,0)$.

Parameterize this as $x=0, y=-t$ with $-1 \leq t \leq 0$. Then $d x=0, d y=-d t$ and the integral becomes $\overline{\int_{-1}^{0} 0} d t=0$.
(c) The line segment from $(0,1)$ to $(1,0)$.

This integral is hard to compute directly so instead use Green's theorem and the results from the other two parts. Let C be the triangle from $(0,0)$ to $(1,0)$ to $(0,1)$ and back to $(0,0)$ and T the region enclosed by C. Let C_{1}, C_{2}, C_{3} be the three line segments in parts a,b,c respectively. Then $C=C_{1} \cup-C_{3} \cup C_{2}$ so $\int_{C} F \cdot d r=\int_{C_{1}} F \cdot d r-\int_{C_{3}} F \cdot d r+\int_{C_{2}} F \cdot d r$. By Green's theorem, $\int_{C} F \cdot d r=\iint_{T} 2 x-2 y \sin \left(y^{2}\right)-\left(-2 y \sin \left(y^{2}\right)\right) d A=$ $\iint_{T} 2 x d A=\int_{0}^{1} \int_{0}^{1-x} 2 x d y d x=\int_{0}^{1} 2 x(1-x) d x=\int_{0}^{1} 2 x-2 x^{2} d x=$ $x^{2}-\left.(2 / 3) x^{3}\right|_{0} ^{1}=1-(2 / 3)$. We combine this result with the results of parts a,b to get $1-(2 / 3)=1-\int_{C_{3}} F \cdot d r+0$ so the line integral over C_{3} is $2 / 3$.
11. Let F be the force field $F(x, y)=\left\langle x, \sqrt{x^{2}+y^{2}}\right\rangle$. A particle the feels this force starts at the origin. It is moved along the x-axis to the point $(1,0)$ and then it is moved along a quarter circle centered at the origin until it reaches the point $(0,1)$. Finally the particle is returned to the origin along the y-axis. Compute the total work done by the force field on the particle during this round trip.

Let D be the quarter D enclosed by the path the particle moves around. Then by Green's theorem, the work is

$$
\begin{gathered}
\iint_{D} \frac{x}{\sqrt{x^{2}+y^{2}}} d A=\int_{0}^{\pi / 2} \int_{0}^{1} r \cos (\theta) d r d \theta=\left.\int_{0}^{\pi / 2} \frac{1}{2} r^{2} \cos (\theta)\right|_{0} ^{1} \\
=\int_{0}^{\pi / 2} \frac{1}{2} \cos (\theta) d \theta=\left.\frac{1}{2} \sin (\theta)\right|_{0} ^{\pi / 2}=\frac{1}{2}
\end{gathered}
$$

12. A certain force $F=\langle P, Q, R\rangle$ is not completely known. It is known however that $P=y z e^{x y}-y^{2}+A x z, Q=x z e^{x y}+2 e^{z}+B x y$, and $R=e^{x y}+3 x^{2}+C y e^{z}$ where A, B, C are constants. A particle is moved from $(0,0,0)$ to $(1,1,1)$ many times along different paths and it is found that the work done by the force is the same each time. Determine values of A, B, C which might explain this result. Compute the work done by the force using these values of A, B, C. This result implies that F is probably conservative. We need to find values of A, B, C which make F conservative. We need $P_{y}=Q_{x}$ so $x y z e^{x y}+z e^{x y}-2 y=x y z e^{x y}+z e^{x y}+B y$ and it follows that $B=-2$. We also
need $P_{z}=R_{x}$ so $y e^{x y}+A x=y e^{x y}+6 x$ so $A=6$. Finally we need $Q_{z}=R_{y}$ so $x e^{x y}+2 e^{z}=x e^{x y}+C e^{z}$ so $C=2$. So F is conservative (and thus the line integral is independent of path) if $A=6, B=-2, C=2$.
To find the work we need to find a potential function f for F. Integrating P with respect to x we get that $f(x, y, z)=z e^{x y}-x y^{2}+3 x^{2} z+g(y, z)$. The derivative is $x z e^{x y}+2 e^{z}-2 x y=f_{y}=x z e^{x y}-2 x y+g_{y}(y, z)$ so $g_{y}(y, z)=2 e^{z}$. Integrating with respect to y we get that $g(y, z)=2 y e^{z}+h(z)$ and so $f(x, y, z)=z e^{x y}-x y^{2}+3 x^{2} z+2 y e^{z}+h(z)$. Then $e^{x y}+3 x^{2}+2 y e^{z}=f_{z}=e^{x y}+3 x^{2}+2 y e^{z}+h^{\prime}(z)$ so $0=h^{\prime}(z)$ and we can take $h(z)=0$ and $f(x, y, z)=z e^{x y}-x y^{2}+3 x^{2} z+2 y e^{z}$. Then the work done is $f(1,1,1)-f(0,0,0)=(e-1+3+2 e)-0=3 e+2$.
13. A thin hollow shell has the shape of the paraboloid $z=9-x^{2}-y^{2}$ for $z \geq 0$. Find the surface area of the shell.
The (x, y) values with make $z \geq 0$ are $9-x^{2}-y^{2} \geq 0$ which is $9 \geq x^{2}+y^{2}$, a disk of radius 3 centered at the origin. Let D be this disk and $f(x, y)=9-x^{2}-y^{2}$. Then the surface area is $\iint_{D} \sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A=$ $\iint_{D} \sqrt{1+(-2 x)^{2}+\left(-2 y^{2}\right)} d A=\iint_{D_{3}} \sqrt{1+4 x^{2}+4 y^{2}} d A$ Changing to polar we get $\int_{0}^{2 \pi} \int_{0}^{3} r \sqrt{1+4 r^{2}} d r d \theta=2 \pi \int_{0}^{3} r \sqrt{1+4 r^{2}} d r$. Using u-substitution with $u=1+4 r^{2}$ we get $2 \pi \int_{1}^{37}(1 / 8) u^{1 / 2} d u=\left.(2 \pi)(1 / 8)(2 / 3) u^{3 / 2}\right|_{1} ^{37}=\frac{\pi}{6}(37 \sqrt{37}-1)$.
14. A sphere of radius 2 is centered at the origin. Find the area of that part of the sphere that lies above the region on the (x, y)-plane where $x \geq 0, y \geq 0$ and $x^{2}+y^{2} \leq 1$.
Let D be the quarter disk $x^{2}+y^{2} \leq 1, x, y \geq 0$. The formula for the sphere is $x^{2}+y^{2}+z^{2}=4$ and we're looking at part of the sphere above the (x, y)-plane so we're looking at the top part of the sphere which solved for z is $z=\sqrt{4-x^{2}-y^{2}}$. As our surface has the form $z=f(x, y)$ we see that the surface area is $\iint_{D} \sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A$. The partial derivatives are $f_{x}=-x /\left(\sqrt{4-x^{2}-y^{2}}\right)$ and $f_{y}=-y /\left(\sqrt{4-x^{2}-y^{2}}\right)$ so $1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}=1+\frac{x^{2}}{4-x^{2}-y^{2}}+\frac{y^{2}}{4-x^{2}-y^{2}}=\frac{4}{4-x^{2}-y^{2}}$. Then $\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}}=\sqrt{\frac{4}{4-x^{2}-y^{2}}}=\frac{2}{\sqrt{4-x^{2}-y^{2}}}$. So the surface area is $\iint_{D} \frac{2}{\sqrt{4-x^{2}-y^{2}}} d A$. Changing to polar we get

$$
\int_{0}^{\pi / 2} \int_{0}^{1} \frac{2 r}{\sqrt{4-r^{2}}} d r d \theta=\frac{\pi}{2} \int_{0}^{1} \frac{2 r}{\sqrt{4-r^{2}}} d r
$$

u-substitution with $u=4-r^{2}$ gives

$$
-\frac{\pi}{2} \int_{4}^{3} u^{-1 / 2} d u=\left.\pi u^{1 / 2}\right|_{3} ^{4}=\pi(2-\sqrt{3}) .
$$

15. Evaluate the line integral $\int_{C} x y d s$ where C is the part of the ellipse $x^{2}+4 y^{2}=4$ in the first quadrant.
The ellipse can be parametrized as $x=2 \cos (t), y=\sin (t)$ and the part in the first quadrant corresponds to $0 \leq t \leq \pi / 2$. Then
$d x / d t=-2 \sin (t), d y / d t=\cos (t)$ so
$d s=\sqrt{4 \sin ^{2}(t)+\cos ^{2}(t)} d t=\sqrt{3 \sin ^{2}(t)+1} d t$. The line integral is
$\int_{0}^{\pi / 2} 2 \cos (t) \sin (t) \sqrt{3 \sin ^{2}(t)+1} d t$. If $u=3 \sin ^{2}(t)+1$ then
$d u=6 \sin (t) \cos (t) d t$ so this is $\int_{1}^{4} \frac{1}{3} u^{1 / 2} d u=\left.\frac{2}{9} u^{3 / 2}\right|_{1} ^{4}=16 / 9-2 / 9=14 / 9$.
16. Evaluate the surface integral $\iint_{S} x y d S$ where S is the triangular region with vertices $(1,0,0),(0,2,0)$, and $(0,0,2)$.
The surface is a plane so we will first find the equation of the plane. It contains vectors $\langle-1,2,0\rangle$ and $\langle-1,0,2\rangle$ so the cross product $\langle 4,2,2\rangle$ normal vector to the plane, as is any multiple of this vector including $\langle 2,1,1\rangle$. Using the point $(1,0,0)$ and normal vector $\langle 2,1,1\rangle$ we get that the plane is $2(x-1)+y+z=0$ or $2 x+y+z=2$.
To evaluate the surface integral, we will parameterize the plane as $r(x, y)=\langle x, y, 2-2 x-y\rangle$. We next need to figure out which values of (x, y) correspond to the triangular region. If we draw the triangular region in 3 dimensions we can see that it's projection down to the $x y$-plane is the triangle with vertices $(1,0),(0,2),(0,0)$ so the surface integral will be taken over this triangle. If $f(x, y)=2-2 x-y$ then $d S=\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A=\sqrt{1+(-2)^{2}+(-1)^{2}} d A=\sqrt{6} d A$ so the surface integral $\iint_{S} x y d S=\int_{0}^{1} \int_{0}^{2-2 x} x y \sqrt{6} d y d x=\left.\sqrt{6} \int_{0}^{1} \frac{1}{2} x y^{2}\right|_{0} ^{2-2 x} d x=$ $\sqrt{6} \int_{0}^{1} \frac{1}{2} x(2-2 x)^{2} d x=\sqrt{6} \int_{0}^{1} 2 x^{3}-4 x^{2}+2 x d x=\sqrt{6}\left(\frac{1}{2} x^{4}-\frac{4}{3} x^{3}+\left.x^{2}\right|_{0} ^{1}\right)=\frac{\sqrt{6}}{6}$.
17. Let S be the surface with vector equation $r(u, v)=\langle u \cos (v), u \sin (v), v\rangle$, $0 \leq u \leq 2,0 \leq v \leq \pi$. See Figure IV on p. 1115 of the textbook for a picture of this surface.
(a) Find the equation of the plane tangent to S at the point $(0,1, \pi / 2)$.

First find the values of u, v which correspond to the point $(0,1, \pi / 2)$.
These are $u=1, v=\pi / 2$. Then $r_{u}=\langle\cos (v), \sin (v), 0\rangle$ and $r_{v}=\langle-u \sin (v), u \cos (v), 1\rangle$ so the cross product is
$r_{u} \times r_{v}=\langle\sin (v),-\cos (v), u\rangle$. When $u=1, v=\pi / 2$ this is $\langle 1,0,1\rangle$ so we are looking for the formula of a plane with point $(0,1, \pi / 2)$ and normal vector $\langle 1,0,1\rangle$. The equation of the plane is $x+(z-\pi / 2)=0$ or $x+z=\pi / 2$.
(b) Set up, but do not evaluate, and integral for the surface area of S.

The surface area is $\int_{S} 1 d S$. Then
$d S=\left|r_{u} \times r_{v}\right| d A=\sqrt{\sin ^{2}(v)+\cos ^{2}(v)+u^{2}} d A=\sqrt{1+u^{2}} d A$ and we're
integrating over the region on the $u v$-plane given by $0 \leq u \leq 2$,
$0 \leq v \leq \pi$ so we get that the surface area is equal to $\int_{0}^{\pi} \int_{0}^{2} \sqrt{1+u^{2}} d u d v$.
(c) Evaluate the surface integral $\iint_{S} \sqrt{1+x^{2}+y^{2}} d S$.

This is the same integral as in part b except we are now integrating $\sqrt{1+x^{2}+y^{2}}$ instead of 1 . We can the parametric formulas of $r(u, v)$ ($x=u \cos (v), y=u \sin (v), z=v)$ to convert the thing we're integrating into u 's and v 's. That is,
$\sqrt{1+x^{2}+y^{2}}=\sqrt{1+u^{2} \cos ^{2}(v)+u^{2} \sin ^{2}(v)}=\sqrt{1+u^{2}}$. So the surface integral becomes $\int_{0}^{\pi} \int_{0}^{2} \sqrt{1+u^{2}} \sqrt{1+u^{2}} d u d v=\int_{0}^{\pi} \int_{0}^{2} 1+u^{2} d u d v=\frac{14 \pi}{3}$.
(d) Evaluate the surface integral $\iint_{S} F \cdot d \mathbf{S}$ where $F=\left\langle y, x, z^{2}\right\rangle$ and S has upward orientation.

We found the normal vector for S to be $r_{u} \times r_{v}=\langle\sin (v),-\cos (v), u\rangle$ which has positive \mathbf{k}-component as u is positive so this corresponds to the upward orientation. Then
$\iint_{S} F \cdot d \mathbf{S}=\int_{0}^{\pi} \int_{0}^{2} F(r(u, v)) \cdot\left(r_{u} \times r_{v}\right) d u d v=\int_{0}^{\pi} \int_{0}^{2}\left\langle u \sin (v), u \cos (v), v^{2}\right\rangle$. $\langle\sin (v),-\cos (v), u\rangle d u d v=\int_{0}^{\pi} \int_{0}^{2} u \sin ^{2}(v)-u \cos ^{2}(v)+v^{2} u d u d v$. We use the trig identity that $\sin ^{2}(v)-\cos ^{2}(v)=-\cos (2 v)$ to rewrite this as $\int_{0}^{\pi} \int_{0}^{2}-u \cos (2 v)+v^{2} u d u d v=\int_{0}^{\pi}-\left.\frac{1}{2} u^{2}\left(\cos (2 v)-v^{2}\right)\right|_{0} ^{2} d v=$ $\int_{0}^{\pi} 2 v^{2}-2 \cos (2 v) d v=\frac{2}{3} v^{3}-\left.\sin (2 v)\right|_{0} ^{\pi}=\frac{2}{3} \pi^{3}$.

