
MATH 2443
3rd Midterm Review Solutions

1. Evaluate
∫
C
xz dx− z dy + y dz where C is the line segment from (1, 1, 1) to

(2, 3, 4).

The line segment can be parametrized as x = 1 + t, y = 1 + 2t, z = 1 + 3t
where 0 ≤ t ≤ 1. Then dx = dt, dy = 2dt, dz = 3dt so the integral becomes∫ 1

0
(1 + t)(1 + 3t) dt− (1 + 3t) 2dt+ (1 + 2t) 3dt =

∫ 1

0
3t2 + 4t+ 2 dt =

t3 + 2t2 + 2t
∣∣1
0

= 5.

2. The force field F (x, y) = 〈ex2 , 2x− ey2〉 acts on a particle moving from (0, 0)
to (1, 1).

(a) Compute the work done by the force if the particle moves in a straight
line.

The work is
∫
C
ex

2
dx+ (2x− ey2) dy. The line can be parametrized as

x = t, y = t for 0 ≤ t ≤ 1 so both dx, dy equal dt and the integral

becomes
∫ 1

0
et

2
+ 2t− et2 dt =

∫ 1

0
2t dt = t2

∣∣1
0

= 1.

(b) Compute the work done by the force if the particle moves first along the
x-axis to (4, 0) and then in a straight line to (1, 1).

These are not easy to evaluate directly, so we will instead use Green’s
theorem and the results from part a. Let C be the triangle with vertices
(0, 0), (4, 0), (1, 1) oriented counterclockwise and T the region enclosed by
C. Let C1 be the path from part b, a straight line from (0, 0) to (4, 0)
then a straight line to (1, 1). Let C2 be the line from (1, 1) to (0, 0). Then
C = C1 ∪ C2 so ∫

C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr .

Then
∫
C1
F · dr = −1 because C2 is the negative of the curve in part a.

We can calculate
∫
C
F · dr using Green’s theorem. We have that

P = ex
2
, Q = 2x− ey2 so Qx = 2, Py = 0 and by Green’s theorem,∫

C
F · dr =

∫∫
T

2 dA = 2A(T ) = 4 where A(T ) is the area of the triangle
T . Then 4 = −1 +

∫
C2
F · dr so the work over C2 is

∫
C2
F · dr = 5.

3. Evaluate
∫
C

(1 + yz) dx+ (2y + xz) dy + (−3x2) dz along the path
parametrized by x = t, y = t2, z = et for 0 ≤ t ≤ 1.

We have that dx = dt, dy = 2tdt, dz = etdt so this becomes∫ 1

0
(1 + t2et) + (2t2 + tet)2t+ (−3t2)et dt =

∫ 1

0
1 + 4t3 dt = t+ t4

∣∣1
0

= 2.
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4. Find the mass of that part of the surface z = xy that lies within one unit of
the z-axis if the density at the point (x, y) is given by δ(x, y) = x2 + y2.
Note: The mass of an object is equal to the integral over the object of the
density function.

This is the surface integral of the function x2 + y2 over the part of the surface
z = xy which is inside the cylinder x2 + y2 = 1. If D is the unit disk
x2 + y2 ≤ 1 on the xy-plane then this integral is

∫∫
D

(x2 + y2) dS. Let

f(x, y) = xy. Then dS =
√

1 + (fx)2 + (fy)2dA =
√

1 + y2 + x2dA so the

integral is
∫∫

D
(x2 + y2)

√
1 + y2 + x2 dA. Changing to polar, we get the

integral∫ 2π

0

∫ 1

0

r2
√

1 + r2r dr dθ =

∫ 2π

0

∫ 1

0

r3
√

1 + r2 dr dθ = 2π

∫ 1

0

r3
√

1 + r2 dr .

Use the u-substitution u = 1 + r2, du = 2rdr and r2 = u− 1 to get that this is

π

∫ 2

1

(u−1)
√
u du = π

∫ 2

1

u
3
2−u

1
2 du = π

(2

5
u

5
2−2

3
u

3
2

)∣∣∣2
1

= 2π
(4
√

2

5
−2
√

2

3
−1

5
+

1

3

)
.

5. A nonuniform piece of wire if bent into the shape of the curve y = sin(x)
between x = 0 and x = π. The density of the wire at the point (x, y) is equal
to 1 + y. Set up, but do not evaluate, an integral equal to the mass of the wire.

This is the line integral of 1 + y over the curve C parametrized by
x = t, y = sin(t), 0 ≤ t ≤ π so it’s

∫
C

(1 + y) ds. Then

dx/dt = 1, dy/dt = cos(t) so ds =
√

1 + cos2(t)dt and the integral is∫ π

0

(1 + sin(t))
√

1 + cos2(t) dt .

6. Find the work done by the force F (x, y) = 〈2x cos(x2) + ey, xey〉 in moving a
particle along a semicircle of radius 1 from (1, 0) to (−1, 0).

This would be difficult to evaluate directly so we will check if F is conservative
so we can use the fundamental theorem of line integrals. F is defined on the
entire xy-plane and Py = ey = Qx so F is conservative. F has potential
function f(x, y) = sin(x2) + xey so the work is
f(−1, 0)− f(1, 0) = (sin(1)− 1)− (sin(1) + 1) = −2.

7. A force given by F (x, y) = 〈y, ex〉 acts on a particle moving from the point
(0, 1) to the point (2, 0) along the following path: first along the curve y = ex

from (0, 1) to (2, e2) and then along a line from there to (2, 0). Find the work
done by the force.
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Let C1 be the first curve. Then C1 can be parametrized by x = t, y = et, 0 ≤ 2
and dx = dt, dy = etdt so the work is∫
C1
y dx+ ex dy =

∫ 2

0
et + e2t dt = et + 1

2
e2t
∣∣2
0

= e2 + 1
2
e4 − 3

2
.

Let C2 be the second part of the curve, the line from (2, e2) to (2, 0). This can
be parametrized by x = 2, y = −t, −e2 ≤ t ≤ 0. Then dx = 0, dy = −dt and

the work is
∫
C2
y dx+ ex dy =

∫ 0

−e2 −e
2 dt = −e2t

∣∣0
−e2 = −e4.

The work over the whole path is e2 + 1
2
e4 − 3

2
− e4 = −1

2
e4 + e2 − 3

2
.

8. Evaluate
∫
C

2xey dx+ (3x+ x2ey) dy where C is the triangular path from
(0, 0) to (1, 1) to (2, 0) and back to (0, 0).

Let T be the triangular region enclosed by C. Then by Green’s theorem, the
line integral over the triangle traversed counterclockwise is∫∫

T
3 + 2xey − 2xey dA =

∫∫
T

3 dA = 3A(T ) = 3 where A(T ) = 1 is the area of
the triangle. The path C traverses the triangle clockwise, so the line integral
over C will be the negative of the counterclockwise integral so it is −3.

9. Let F (x, y, z) = 〈ey + zex, xey − ez, ex − yez〉.

(a) Compute the curl and divergence of F .

The curl of F is 〈−ez − (−ez), ex − ex, ey − ey〉 = 〈0, 0, 0〉 and the
divergence is zex + xey − yez.

(b) Determine if F is conservative. If yes, find f such that F = ∇f , if not
explain why.

F is conservative as it is defined on all R3 and has curl equal to 0. To
find f , we integrate the first component of F with respect to x and get
that f(x, y, z) = xey + zex + g(y, z). Then xey − ez = fy = xey + gy(y, z)
so gy(y, z) = −ez. Integrating with respect to y we get
g(y, z) = −yez + h(z) so f(x, y, z) = xey + zex − yez + h(z). Then
ex − yez = fz = ex − yez + h′(z) so h′(z) = 0 and h(z) = c where c is
constant. Thus f is of the form f(x, y, z) = xey + zex − yez + c. We only
need to find one such f so in particular we can take the one where c = 0
so we have f(x, y, z) = xey + zex − yez.

(c) Integrate
∫
C
F · dr along the line segment from (1, 1, 1) to (2, 2, 2).

F is conservative so we can use the fundamental theorem of line integrals
to get that∫
C
F · dr = f(2, 2, 2)− f(1, 1, 1) = (2e2 + 2e2− 2e2)− (e+ e− e) = 2e2− e.

10. Compute
∫

cos(y2)dx+ x(x− 2y sin(y2))dy along each of the following paths.

(a) The line segment from (0, 0) to (1, 0).
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Parameterize this as x = t, y = 0 with 0 ≤ t ≤ 1 and dx = dt, dy = 0.
Then the integral becomes

∫ 1

0
dt = 1.

(b) The line segment from (0, 1) to (0, 0).

Parameterize this as x = 0, y = −t with −1 ≤ t ≤ 0. Then
dx = 0, dy = −dt and the integral becomes

∫ 0

−1 0 dt = 0.

(c) The line segment from (0, 1) to (1, 0).

This integral is hard to compute directly so instead use Green’s theorem
and the results from the other two parts. Let C be the triangle from
(0, 0) to (1, 0) to (0, 1) and back to (0, 0) and T the region enclosed by C.
Let C1, C2, C3 be the three line segments in parts a,b,c respectively. Then
C = C1 ∪ −C3 ∪ C2 so

∫
C
F · dr =

∫
C1
F · dr −

∫
C3
F · dr +

∫
C2
F · dr. By

Green’s theorem,
∫
C
F · dr =

∫∫
T

2x− 2y sin(y2)− (−2y sin(y2)) dA =∫∫
T

2x dA =
∫ 1

0

∫ 1−x
0

2x dydx =
∫ 1

0
2x(1− x) dx =

∫ 1

0
2x− 2x2 dx =

x2 − (2/3)x3
∣∣1
0

= 1− (2/3). We combine this result with the results of
parts a,b to get 1− (2/3) = 1−

∫
C3
F · dr + 0 so the line integral over C3

is 2/3.

11. Let F be the force field F (x, y) = 〈x,
√
x2 + y2〉. A particle the feels this force

starts at the origin. It is moved along the x-axis to the point (1, 0) and then it
is moved along a quarter circle centered at the origin until it reaches the point
(0, 1). Finally the particle is returned to the origin along the y-axis. Compute
the total work done by the force field on the particle during this round trip.

Let D be the quarter D enclosed by the path the particle moves around. Then
by Green’s theorem, the work is∫∫

D

x√
x2 + y2

dA =

∫ π/2

0

∫ 1

0

r cos(θ) drdθ =

∫ π/2

0

1

2
r2 cos(θ)

∣∣∣1
0

=

∫ π/2

0

1

2
cos(θ) dθ =

1

2
sin(θ)

∣∣∣π/2
0

=
1

2
.

12. A certain force F = 〈P,Q,R〉 is not completely known. It is known however
that P = yzexy − y2 +Axz, Q = xzexy + 2ez +Bxy, and R = exy + 3x2 +Cyez

where A,B,C are constants. A particle is moved from (0, 0, 0) to (1, 1, 1)
many times along different paths and it is found that the work done by the
force is the same each time. Determine values of A,B,C which might explain
this result. Compute the work done by the force using these values of A,B,C.

This result implies that F is probably conservative. We need to find values of
A,B,C which make F conservative. We need Py = Qx so
xyzexy + zexy − 2y = xyzexy + zexy +By and it follows that B = −2. We also
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need Pz = Rx so yexy + Ax = yexy + 6x so A = 6. Finally we need Qz = Ry so
xexy + 2ez = xexy + Cez so C = 2. So F is conservative (and thus the line
integral is independent of path) if A = 6, B = −2, C = 2.

To find the work we need to find a potential function f for F . Integrating P
with respect to x we get that f(x, y, z) = zexy − xy2 + 3x2z + g(y, z). The
derivative is xzexy + 2ez − 2xy = fy = xzexy − 2xy + gy(y, z) so gy(y, z) = 2ez.
Integrating with respect to y we get that g(y, z) = 2yez + h(z) and so
f(x, y, z) = zexy − xy2 + 3x2z + 2yez + h(z). Then
exy + 3x2 + 2yez = fz = exy + 3x2 + 2yez + h′(z) so 0 = h′(z) and we can take
h(z) = 0 and f(x, y, z) = zexy − xy2 + 3x2z + 2yez. Then the work done is
f(1, 1, 1)− f(0, 0, 0) = (e− 1 + 3 + 2e)− 0 = 3e+ 2.

13. A thin hollow shell has the shape of the paraboloid z = 9− x2 − y2 for z ≥ 0.
Find the surface area of the shell.

The (x, y) values with make z ≥ 0 are 9− x2 − y2 ≥ 0 which is 9 ≥ x2 + y2, a
disk of radius 3 centered at the origin. Let D be this disk and
f(x, y) = 9− x2 − y2. Then the surface area is

∫∫
D

√
1 + (fx)2 + (fy)2 dA =∫∫

D

√
1 + (−2x)2 + (−2y2) dA =

∫∫
D

√
1 + 4x2 + 4y2 dA Changing to polar

we get
∫ 2π

0

∫ 3

0
r
√

1 + 4r2 drdθ = 2π
∫ 3

0
r
√

1 + 4r2 dr. Using u-substitution with

u = 1 + 4r2 we get 2π
∫ 37

1
(1/8)u1/2 du = (2π)(1/8)(2/3)u3/2

∣∣37
1

= π
6
(37
√

37− 1).

14. A sphere of radius 2 is centered at the origin. Find the area of that part of the
sphere that lies above the region on the (x, y)-plane where x ≥ 0, y ≥ 0 and
x2 + y2 ≤ 1.

Let D be the quarter disk x2 + y2 ≤ 1, x, y ≥ 0. The formula for the sphere is
x2 + y2 + z2 = 4 and we’re looking at part of the sphere above the (x, y)-plane
so we’re looking at the top part of the sphere which solved for z is
z =

√
4− x2 − y2. As our surface has the form z = f(x, y) we see that the

surface area is
∫∫

D

√
1 + (fx)2 + (fy)2 dA. The partial derivatives are

fx = −x/(
√

4− x2 − y2) and fy = −y/(
√

4− x2 − y2) so

1 + (fx)
2 + (fy)

2 = 1 + x2

4−x2−y2 + y2

4−x2−y2 = 4
4−x2−y2 . Then√

1 + (fx)2 + (fy)2 =
√

4
4−x2−y2 = 2√

4−x2−y2
. So the surface area is∫∫

D
2√

4−x2−y2
dA. Changing to polar we get∫ π/2

0

∫ 1

0

2r√
4− r2

drdθ =
π

2

∫ 1

0

2r√
4− r2

dr .

u-substitution with u = 4− r2 gives

−π
2

∫ 3

4

u−1/2 du = πu1/2
∣∣∣4
3

= π(2−
√

3) .
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15. Evaluate the line integral
∫
C
xy ds where C is the part of the ellipse

x2 + 4y2 = 4 in the first quadrant.

The ellipse can be parametrized as x = 2 cos(t), y = sin(t) and the part in the
first quadrant corresponds to 0 ≤ t ≤ π/2. Then
dx/dt = −2 sin(t), dy/dt = cos(t) so

ds =
√

4 sin2(t) + cos2(t)dt =
√

3 sin2(t) + 1dt. The line integral is∫ π/2
0

2 cos(t) sin(t)
√

3 sin2(t) + 1 dt. If u = 3 sin2(t) + 1 then

du = 6 sin(t) cos(t)dt so this is
∫ 4

1
1
3
u1/2 du = 2

9
u3/2

∣∣4
1

= 16/9− 2/9 = 14/9.

16. Evaluate the surface integral
∫∫

S
xy dS where S is the triangular region with

vertices (1, 0, 0), (0, 2, 0), and (0, 0, 2).

The surface is a plane so we will first find the equation of the plane. It
contains vectors 〈−1, 2, 0〉 and 〈−1, 0, 2〉 so the cross product 〈4, 2, 2〉 normal
vector to the plane, as is any multiple of this vector including 〈2, 1, 1〉. Using
the point (1, 0, 0) and normal vector 〈2, 1, 1〉 we get that the plane is
2(x− 1) + y + z = 0 or 2x+ y + z = 2.

To evaluate the surface integral, we will parameterize the plane as
r(x, y) = 〈x, y, 2− 2x− y〉. We next need to figure out which values of (x, y)
correspond to the triangular region. If we draw the triangular region in 3
dimensions we can see that it’s projection down to the xy-plane is the triangle
with vertices (1, 0), (0, 2), (0, 0) so the surface integral will be taken over this
triangle. If f(x, y) = 2− 2x− y then
dS =

√
1 + (fx)2 + (fy)2dA =

√
1 + (−2)2 + (−1)2dA =

√
6dA so the surface

integral
∫∫

S
xy dS =

∫ 1

0

∫ 2−2x
0

xy
√

6 dydx =
√

6
∫ 1

0
1
2
xy2
∣∣2−2x
0

dx =√
6
∫ 1

0
1
2
x(2− 2x)2 dx =

√
6
∫ 1

0
2x3− 4x2 + 2x dx =

√
6(1

2
x4− 4

3
x3 + x2

∣∣1
0
) =

√
6
6

.

17. Let S be the surface with vector equation r(u, v) = 〈u cos(v), u sin(v), v〉,
0 ≤ u ≤ 2, 0 ≤ v ≤ π. See Figure IV on p. 1115 of the textbook for a picture
of this surface.

(a) Find the equation of the plane tangent to S at the point (0, 1, π/2).

First find the values of u, v which correspond to the point (0, 1, π/2).
These are u = 1, v = π/2. Then ru = 〈cos(v), sin(v), 0〉 and
rv = 〈−u sin(v), u cos(v), 1〉 so the cross product is
ru × rv = 〈sin(v),− cos(v), u〉. When u = 1, v = π/2 this is 〈1, 0, 1〉 so we
are looking for the formula of a plane with point (0, 1, π/2) and normal
vector 〈1, 0, 1〉. The equation of the plane is x+ (z − π/2) = 0 or
x+ z = π/2.

(b) Set up, but do not evaluate, and integral for the surface area of S.

The surface area is
∫
S

1 dS. Then

dS = |ru × rv|dA =
√

sin2(v) + cos2(v) + u2dA =
√

1 + u2dA and we’re
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integrating over the region on the uv-plane given by 0 ≤ u ≤ 2,
0 ≤ v ≤ π so we get that the surface area is equal to

∫ π
0

∫ 2

0

√
1 + u2 dudv.

(c) Evaluate the surface integral
∫∫

S

√
1 + x2 + y2 dS.

This is the same integral as in part b except we are now integrating√
1 + x2 + y2 instead of 1. We can the parametric formulas of r(u, v)

(x = u cos(v), y = u sin(v), z = v) to convert the thing we’re integrating
into u’s and v’s. That is,√

1 + x2 + y2 =
√

1 + u2 cos2(v) + u2 sin2(v) =
√

1 + u2. So the surface

integral becomes
∫ π
0

∫ 2

0

√
1 + u2

√
1 + u2 dudv =

∫ π
0

∫ 2

0
1 + u2 dudv = 14π

3
.

(d) Evaluate the surface integral
∫∫

S
F · dS where F = 〈y, x, z2〉 and S has

upward orientation.

We found the normal vector for S to be ru × rv = 〈sin(v),− cos(v), u〉
which has positive k-component as u is positive so this corresponds to
the upward orientation. Then∫∫

S
F · dS =

∫ π
0

∫ 2

0
F (r(u, v))·(ru×rv) dudv =

∫ π
0

∫ 2

0
〈u sin(v), u cos(v), v2〉·

〈sin(v),− cos(v), u〉 dudv =
∫ π
0

∫ 2

0
u sin2(v)− u cos2(v) + v2u dudv. We

use the trig identity that sin2(v)− cos2(v) = − cos(2v) to rewrite this as∫ π
0

∫ 2

0
−u cos(2v) + v2u dudv =

∫ π
0
−1

2
u2(cos(2v)− v2)

∣∣2
0
dv =∫ π

0
2v2 − 2 cos(2v) dv = 2

3
v3 − sin(2v)

∣∣π
0

= 2
3
π3.
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